

VAL2 lacks support for
» CSI-2 virtual channels and data types

Conceptually, this also affects other buses that can carry multiple
streams, MIPI CSI-2 is only the most common example.

* Crossbar switches

This can be generalized as missing support for routing internal to
media entities and V4L2 subdevs.

Problem Statement

15* — Internal Routing

MIPI Camera x4 MIPI Camera x4

MIPI CSI2 MIPICSI2 | [-CDIF * MIPI DS » MIPI Display
NPU St T D x4
> < 1 LcoiF
ML pe— S ———— E Em— T
Accelerator i 1
i ISP Shared ISP | | LvDS » VDS Display
: L : PIXEL g
_ e | || MAPPER | J X1
* VDS
! Ul
VPU GPU LCDIF » HDMI » HDMI Display
Gl || G2 GC7000UL
oec || pec || BN
Memory GC520L

I.MX 8M Plus Applications Processor Reference Manual, Rev. 1, 06/2021

I.MX8MP Hardware Architecture

I:l Blocks that are outside the 151 1P
|:| Sub-blocks that are part of the 151 P

Subsystem Clock Generator

REGFILE {
Procassing Clock REGFILE]

-—

Bus Command

Pixel Clock Virite
- - - - - - |
) |
vy |
|
AX| BUS
A WE ARE [AXIWR | :
—— Pixel Lirt] > ") Tl>) | 128-bits
—— Input 1 3)
(a3, : PIXEL ﬁ PROCESSING PIPELINE 0 > |
> |
[AXIWR_ARE [AXIWR ™, ':‘;B' E.t's
Bus Command | [{)]) | ;L-H.I]
Read - Xl 2 F'L4—|
‘L\ |
|
| T+ [uemno BHIWR ARE [AXIWR |, AXIBUS
AXI BUS ! CTAL [, > y | 128-bits
; AXl - RO <) V) v})
128-bits | Y Memory Read Control for Deinterlace |
| {per channsl) |
: f:::‘é‘;‘_‘“lzl Bus Command Arbitrate and Writa |
Interrupts 4—,7 | ADDHEESS, |
¥ o e | [sRramo
L } CONFIGRATION conToL |
| APBBUS REGISTERS meres le | SRAM1
| ¥ g SHARING |
APBE Select |
|per channal) | |
| LINE BUFFER |
| MANAGEMENT IMAGE SENSOR INTERFACE (ISI
L e e _____ -

I.MX 8M Plus Applications Processor Reference Manual, Rev. 1, 06/2021

Image Sensing Interface (1SI)

I:l Blocks that are outside the 151 1P

Subsystem Clock Generator
HEEFILE§ |:| Sub-blocks that are part of the 151 IP

|
—— Pixel Lirt] >

— Input 1/
|
|

Bus Command |

AXI BUS
128-bits

Interrupts 4_,7

<i

APB Selact

|per channal)

o axi - A

Pixel Clock

Procassing Clock REGFILE
i Bus L".-l:!mrnand
Enahl Writa

SR

R

Fead - Ax 2 PUY
A
|
|
|
|
|
[

APBBUS
¥

EWW Momory
Road Coniml

COMFIGRAT
REGISTER

Possible routes:

« Any CSI-2 receiver to any output, e
memory input to pad 3 only s

* The same CSI-2 receiver can be
routed to both outputs concurrently
(a.k.a. stream duplication)

* No two inputs can be routed to the

same output concurrently (a.k.a.

stream merging)

. AXIBUS
> 12B-bits
V)

|
|
|
|
|
|
|
|
I
[[{1}]
|
|
|
|
|
|
|
|

LIME BUFFER
MANAGEMENT IMAGE SENSOR INTERFACE (ISI)

—_————————— — —————— ———— —— — — — — — — — —_—— — — —_— —_——— — — —_—— —_————_—— —]

I.MX 8M Plus Applications Processor Reference Manual, Rev. 1, 06/2021

Image Sensing Interface (1SI)

mxc_isi.output

mxc_isi.b.capture
/dev/videoO

mxc_isi. i.capture
/dev/videol

The routing can be modelled with media
controller links.

Problems:
* No way to enumerate supported

options
* |t doesn’t scale

/

‘m Crossbar Switch - Links

fe920000.vsp1 rpf.4 input
/dev/video4

fe920000.vsp1 rpf.3 input

fe920000.vsp1 rpf.1 input

fe920000.vsp1 rpf.0 input

fe920000.vsp1 rpf.2 input

/dev/video3

/dev/videol

/dev/videoO

fe920000.vsp1 wpf.3 output
/dev/video8

£e920000.vsp1 wpf.2 output
/dev/video7

.1 output
/dev/video6

fe920000.vsp1 wpf.

/dev/video5

Told You

£e920000.vsp1 wpf.0 output

/dev/video2

)

line

S in main

, It doesn’t scale (@and thar

\
BOAR

\D
ON

mxc_isi.output

mxc_isi.0.capture
/dev/videoO

mxc_isi.1.capture
/dev/videol

Proposed solution:

* One entity and V4L2 subdev for the
crossbar switch

* New ioctls for the V4L2 subdev
userspace API to expose internal
routing

/

‘w Crossbar Switch - Internal Routing

2"Y — Streams

Renesas ADAS View Solution Kit
for Software Application Development

The world is consuming
more and more video
Streams on a single
system.

Bottom side

ADAS Surround View - 8 Cameras

SECURE
AUTHENTICATOR

‘C BUS

Long range digital
connectivity solutions exist
(GMSL, FPD-Link, MIPI A-
PHY, ...).

GMSL
DESERIALIZER

GMSL CHANNEL

VIDEO

PolC

PoC FILTER
YY"

DC SOURCE

T ———

DVP/CSI-2 A
——y Ei

1 12¢/GPIO
MIPI CS1-2

DVP/CSI-2

DVP/CSI-2 <«——>{ Optional
) jali FPD-Link I1I 12C/GPIO
—A Serializer in / o

L [Sac/erio DS90UB964 TDAXxx

4 Deserializer Vision Processor
DVP/CSI-2

Serializer FPD-Link 111
7 ISP

- 12¢/GPIO MIPI C51-2 .
Optional

DVP/CSI-2

— FSIN

Serializer FPD-Link 111 "

12C/GPIO 12C/GPIO

1 12C/GPIO

Camera Long Range Connectivity

Al

A2

A3

A4

Bl

B2

B3

B4

C1

C2

C3

Ca

D1

D2

D3

D4

FPD-Link Il

MIPI CSI-2 Al Bl A2 B2

FPD-Link Il
DS90UB964
Deserializer

FPD-Link Il

EIEZ) C1 D1 C2 D2

FPD-Link Il

On the receiving side, MIPI
CSI-2 is the most common
local bus, simplifying
connectivity with its
support for multiplexed
virtual channels.

/4

Frame Start Packet Embedded Data Data Type 1 Image Data

= , A . p A .
LPSPH | Embed Data | PFPH | Data Type 1 | PF

Data Type 1 Image Data Data Type 2 Image Data Data Type 1 Image Data
s A al s A A r A Al
+(LPSPH| Data Type 1 | PF @ LPS @ PH| Data Type 2 | PF LPSPHl Data Type 1 | PF
Data Type 2 Image Data Data Type 1 Image Data Frame End Packet

s A A} r A A r‘jﬁ
LPS @ PH| Data Type 2 |PF @ LPS @ PH | Data Type 1 | PFLPS
KEY:
LPS — Low Power State PH — Packet Header FS — Frame Start Packet
SoT — Start of Transmission PF — Packet Footer FE — Frame End Packet

EoT — End of Transmission

Figure 73 PDAF Data with Different Data Type

CSI-2 also supports
interleaving multiple data
types from one video
source. A camera sensor
can send image data,
PDAF (phase detection
auto focus) data and
embedded data over the
same link.

MIPI CSI-2 Data Types

i2c@xxxx{
device@xx {

ports {
#address-cells = <1>; . .
#size-cells = <0>; The virtual channel can be selected in
port@o {)
the device tree.

reg = <0>;
dev_out: endpoint {
vc-id = <1>;
remote-endpoint = <&csi_in0>; Problems:

3
}; K * Can't be selected at runtime
b * Still supports a single virtual channel
only if specified in port node
* Doesn’t address exposing streams to
userspace

}

Streams - Device Tree

[

)

unicafn-image
/dev/videoO

unicam-er'nbedded
/dev/videol

The streams can be modelled with
multiple links.

Problems:

* |t doesn’t scale (CSI-2 supports 32
VCs x 64 DTs = 2048 streams)

Streams — Multiple Links

Proposed solution:

* Allow links to carry multiple streams

* Expose streams to userspace on pads
(per-stream formats, selection
rectangles, ...)

* Expose streams to userspace in
subdev routing tables

» Streams are not dependent on a bus
type, keep the streams to VCs/DTs
mapping internal to the kernel

Proposal

[PATCH v14 17/34] media:
[PATCH v14 18/34] media:
[PATCH v14 19/34] media:
[PATCH v14 20/34] media:
[PATCH v14 21/34] media:
[PATCH v14 22/34] media:
[PATCH v14 23/34] media:
[PATCH v14 24/34] media:
[PATCH v14 25/34] media:
[PATCH v14 26/34] media:
[PATCH v14 27/34] media:
[PATCH v14 28/34] media:
[PATCH v14 29/34] media:
[PATCH v14 30/34] media:
[PATCH v14 31/34] media:
[PATCH v14 32/34] media:
[PATCH v14 33/34] media:

[PATCH v14 34/34] media

add V4L2_SUBDEV_FL_STREAMS

add V4L2_SUBDEV_CAP_STREAMS

Documentation: Add GS_ROUTING documentation

subdev: Add [GS] _ROUTING subdev ioctls and operations
subdev: add v412_subdev_has_pad_interdep()

subdev: add v412_subdev_set_routing helper()

subdev: Add for_each_active route() macro

Documentation: add multiplexed streams documentation
subdev: add stream based configuration

subdev: use streams in v4l2_subdev_link_validate()

subdev: add "opposite" stream helper funcs

subdev: add streams to v412_subdev_get fmt() helper function
subdev: add v412_subdev_set_routing_with_fmt() helper
subdev: add v412_subdev_routing_validate() helper
v4l2-subdev: Add v4l2_subdev_state xlate streams() helper
v4l2-subdev: Add subdev .(enable|disable) streams() operations
v4l2-subdev: Add v4l2_subdev_s stream_helper() function

: Add stream to frame descriptor

(01/34 to 16/34 already queued for v6.1)

V4L2

Streams API (v14)

Routing — Userspace
API

+ * struct v412_subdev_routing - Subdev routing information
+ *
+ * @which: configuration type (from enum v412_subdev_format_whence)
+ * @num_routes: the total number of routes in the routes array
+ * @routes: pointer to the routes array
+ * @reserved: drivers and applications must zero this array
+ */
+struct v412_subdev_routing {
+ __u32 which;
+ __U32 num_routes;
+ __u64 routes;
+ __u32 reserved[6];
+};
+#define VIDIOC_SUBDEV_G_ROUTING _IOWR('V', 38, struct v412_subdev_routing)
+#define VIDIOC_SUBDEV_S_ROUTING _IOWR('V', 39, struct v412_subdev_routing)
* The API adds support for getting and setting * Q: Do we need incremental updates ?
routing tables. * Q: How does userspace enumerate possible
e Setting a routing table overrides the whole routes ?
configuration (no incremental updates). * Q: More generically, how does userspace query
« Configurations can be tried using the usual subdev routing restrictions ?
ACTIVE/TRY states.

Internal Routing uAPI (1/3)

+/**

+ * struct v412_subdev_route - A route inside a subdev

+ *

@sink_pad: the sink pad index

@source_pad: the source pad index

@flags: route flags V4L2_SUBDEV_ROUTE_FL_*

+ * @reserved: drivers and applications must zero this array
+ */

+struct v412_subdev_route {

+ + +
* % X

+ __u32 sink_pad;

+ __u32 source_pad;
+ __u32 flags;

+ __u32 reserved[5];
+};

* Aroute connects a sink pad to a source pad.

Internal Routing uAPI (2/3)

+/* The v412 sub-device supports routing and multiplexed streams. */

+#define V4L2_SUBDEV_CAP_STREAMS OxX00000002

+

+/*

+ * Is the route active? An active route will start when streaming is enabled
+ * on a video node.

+ */

+#define V4L2_SUBDEV_ROUTE_FL_ACTIVE _BITUL(O)

+

+/*

+ * Is the route a source endpoint? A source endpoint route refers to a stream

+ * generated by the subdevice (usually a sensor), and thus there is no

+ * sink-side endpoint for the route. The sink_pad and sink_stream fields are

+ * unused.

+ * Set by the driver.

+ */

+#define V4L2_SUBDEV_ROUTE_FL_SOURCE _BITUL(2)

* A new capability flag exposes support of the API to * Q: What is an inactive route ? (cfr question on
userspace. previous slide about enumeration)

* Aroute can be active or inactive (exact meaning * Q: Are “source routes” a good idea ?

not defined yet).
* The source of a route can be a sink pad, or an
internal source (e.g. camera sensors).

Internal Routing uAPI (3/3)

Routing — Kernel API

* struct v412_subdev_krouting - subdev routing table

* @num_routes: number of routes

* @routes: &struct v412_subdev_route

*

* This structure contains the routing table for a subdev.
*/

+struct v412_subdev_krouting {

+ unsigned int num_routes;

+ struct v412_subdev_route *routes;

+};

struct v412_subdev_state {
/* lock for the struct v412_subdev_state fields */
struct mutex _lock;
struct mutex *lock;
struct v412_subdev_pad_config *pads;
+ struct v412_subdev_krouting routing;

iy

* Internal structure to model routing.

* Integrated in v412_subdev_state. The whole
routing API is heavily based on the subdev state,
and requires drivers to use the recent active
subdev state API.

Internal Routing kAPI (1/2)

/**
* struct v412_subdev_pad_ops - v4l2-subdev pad level operations

*

* L]
+ * @set_routing: enable or disable data connection routes described in the
+ ¥ subdevice routing table.
L]
*/
struct v412_subdev_pad_ops {
[...]
+ int (*set_routing)(struct v412_subdev *sd,
+ struct v412_subdev_state *state,
+ enum v412_subdev_format_whence which,
+ struct v412_subdev_krouting *route);
[...]
Iy

* New subdev pad operation to set routing.

* Subdev drivers must store the routing table in the
state.

* The GET ioctl is fully implemented by the V4L2
subdev core, retrieving the routing table from the
state.

Internal Routing kAPI (2/2)

Routing — Kernel
Helpers

+/*~k

+ * for_each_active_route - iterate on all active routes of a routing table
+ * @routing: The routing table

+ * @route: The route iterator

+ */

+#define for_each_active_route(routing, route) \

+ for ((route) = NULL; \

+ ((route) = __v412_subdev_next_active_route((routing), (route)));)

* Helper to iterate over active routes in a routing
table.

Internal Routing Helpers (1/5)

+enum v412_subdev_routing_restriction {

+ V4L2_SUBDEV_ROUTING_NO_1_TO_N BIT(0),

+ V4L2_SUBDEV_ROUTING_NO_N_TO_1 BIT(1),

+ V4L2_SUBDEV_ROUTING_NO_STREAM_MIX = BIT(2),

+
[

+

+/**

* v412_subdev_routing_validate() - Verify that routes comply with driver constraints
* @sd: The subdevice

* @routing: Routing to verify

* @disallow: Restrictions on routes

*

*

*

*

This verifies that the given routing complies with the @disallow constraints.

Returns © on success, error value otherwise.
*/
+int v412_subdev_routing_validate(struct v412_subdev *sd,
+ const struct v412_subdev_krouting *routing,
+ enum v412_subdev_routing_restriction disallow);

+ 4+ + 4+ + ++ ++

» Helper to validate a routing table against common
constraints: stream duplication (1:N routing),
stream merging (N:1 routing), stream mixing
(streams coming on the same pad can be routed
to different pads).

Internal Routing Helpers (2/5)

/**

* v412_subdev_set_routing() - Set given routing to subdev state
* @sd: The subdevice

@state: The subdevice state

@routing: Routing that will be copied to subdev state

This will release old routing table (if any) from the state, allocate
enough space for the given routing, and copy the routing.

+ 4+ + 4+ + F++++
* 0% X % %k X X

This can be used from the subdev driver's set_routing op, after validating
* the routing.

+ */

+int v412_subdev_set_routing(struct v412_subdev *sd,

+ struct v412_subdev_state *state,

+ const struct v412_subdev_krouting *routing);

+

* Helper to store a routing table in the state (handles
memory allocation).

Internal Routing Helpers (3/5)

+/**

+ * v412_subdev_set_routing_with_fmt() - Set given routing and format to subdev
+ state

@sd: The subdevice

@state: The subdevice state

@routing: Routing that will be copied to subdev state

@fmt: Format used to initialize all the streams

This is the same as v412_subdev_set_routing, but additionally initializes
all the streams using the given format.

+ + + 4+ +++ +
* 0% X % %k X X

*/

+int v412_subdev_set_routing_with_fmt(struct v412_subdev *sd,

+ struct v412_subdev_state *state,

+ struct v412_subdev_krouting *routing,
+ const struct v412_mbus_framefmt *fmt);

* Helper to store a routing table in the state and * Q: How about selection rectangles ? Do we need
reset all formats on the corresponding pads (fmt is better helpers ?
assumed to be valid).

Internal Routing Helpers (4/5)

+/**
+ * v412_subdev_routing_find_opposite_end() - Find the opposite stream
+ * @routing: routing used to find the opposite side

+ * @pad: pad id

+ * @stream: stream id

+ * @other_pad: pointer used to return the opposite pad

+ * @other_stream: pointer used to return the opposite stream

+~k

+ * This function uses the routing table to find the pad + stream which is

+ * opposite the given pad + stream.

+~k

+ * @other_pad and/or @other_stream can be NULL if the caller does not need the
+ * value.

+*

+ * Returns O on success, or -EINVAL if no matching route is found.

+ */

+int v412_subdev_routing_find_opposite_end(const struct v412_subdev_krouting *routing,
+ u32 pad, u32 stream, u32 *other_pad,
+ u32 *other_stream);

* Helper to follow streams inside a subdev.

Internal Routing Helpers (5/5)

Streams - Userspace
API

Pipelines and media streams
NANNNNNNNNNNNNNNNNNNNNNNNNNN

+A media stream is a stream of pixels or metadata originating from one or more
+source devices (such as a sensors) and flowing through media entity pads
+towards the final sinks. The stream can be modified on the route by the
+devices (e.g. scaling or pixel format conversions), or it can be split into
+multiple branches, or multiple branches can be merged.

+

+A media pipeline is a set of media streams which are interdependent. This
+interdependency can be caused by the hardware (e.g. configuration of a second
+stream cannot be changed if the first stream has been enabled) or by the driver
+due to the software design. Most commonly a media pipeline consists of a single
+stream which does not branch.

* In the API, streams are identified by an arbitrary « Streams are routed in subdevs using the routing
numerical ID. The IDs are link-local, the same API. The stream ID will typically change when the
stream ID on the source and sink pads of a link stream goes through a subdev (no graph-global
refer to the same stream. ID).

[l Streams uAPI (1/5)

/d

*

struct v412_subdev_route - A route inside a subdev

@sink_pad: the sink pad index

@sink_stream: the sink stream identifier

@source_pad: the source pad index

@source_stream: the source stream identifier

@flags: route flags V4L2_SUBDEV_ROUTE_FL_*

@reserved: drivers and applications must zero this array

+
L . S T R N

*/

struct v412_subdev_route {
__u32 sink_pad;

+ __u82 sink_stream;
__Uu32 source_pad;

+ __u32 source_stream;
__u32 flags;
__u32 reserved[5];

+;

» Streams are created by subdev internal routes. * Q: Do we need to support dynamic routing
When a route is created with sink and source changes (while streaming) ?
stream IDs, those streams are implicitly created on
the corresponding pads.
* |f a subdev doesn’t support the internal routing
API, all pads have an implicit stream with ID O.

) streams uAPI (2/5)

/**
* struct v412_subdev_format - Pad-level media bus format
* @which: format type (from enum v412_subdev_format_whence)
* @pad: pad number, as reported by the media API
* @format: media bus format (format code and frame size)
+ * @stream: stream number, defined in subdev routing
* @reserved: drivers and applications must zero this array
*/
struct v412_subdev_format {
__u32 which;
__u32 pad;
struct v412_mbus_framefmt format;
- __u32 reserved[8];
+ __u32 stream,;
+ __u32 reserved[7];

};

+ v412_subdev_crop, v412_subdev_mbus_code_enum, v412_subdev_frame_size_enum, v412_subdev_frame_interval,
v412_subdev_frame_interval_enum and v412_subdev_selection

» Streams are exposed to userspace in pad * Q: Should we skip v4l2_subdev_crop (legacy) ?
configuration. Pad formats become per-stream. How about v412_subdev_frame_interval (no
* Formats are reset when routing is modified. existing use case) ?

* Q: Should we avoid resetting formats (e.g. to
support dynamic routing changes) ?

Streams uAPI (3/5)

sink media
bus format

pad 0 (sink)

4®

-
.=
=

pad 1 (sink)

sink
crop
selection

source)
crop Zour]::e media
selection us format

-~
.....
- -

~~~~~~ dfammmmmmm T e
-------- gt i SR
S
~ -
AF S R E— N I A B ———
~ - —xx I [ A e
ol _am=Tt" | _.e=1T | i ammm== 3 e S
~e===1"] b, T eamm==mmmmm T -
- = ="
- Sez"
Ye=""T  _a==" Sho -
- —a -
sg==" U N B IO I [ K
-33 ~ ~Fed., " =a.
- ~. LU B A B B S i
~ DU B I A N A I S
~ ~o 1 0 T e e e
.. == ! ! el Tt=a.
CE L R ~ - -
PR Ry [ B .~
- -l= ~
e Ser-l ST R L
------ ~ ~ - i
---- - S LR e
—m= 5 PO s e
- ~ L e
__________
__________
.....

pad 2 (source)

O

pad 3 (source)

O

* Q: Extending the subdev configuration model
(Documentation/userspace-api/media/v4l/dev-
subdeuv.rst) for streams hasn’t been considered
yet. How do we avoid creating a horribly complex

monster ?

Streams UAPI (4/5)



[ \ struct v412_subdev_route routes[] = {

. {
Pixel Process .source_pad = 0,
Array .source_stream = 0,
5 .flags = V4L2_SUBDEV_ROUTE_FL_SOURCE
by V4L2_SUBDEV_ROUTE_FL_ACTIVE,
0v1063x 01-001a . | vatz_. ROUTE L
/dev/v41l-subdev2 {
.source_pad = 0,
I .source_stream = 1,
y .flags = V4L2_SUBDEV_ROUTE_FL_SOURCE
Pad 0, Streams 0 & 1 /* | V4L2_SUBDEV_ROUTE_FL_ACTIVE */,
\_ ) }

iy

* A simplified version of the generic subdev model is
used with camera sensors. Q: Can it support control of ED when streaming ?
* The routing table is used to control transmission of Q: How does this integrate with other sensor
embedded data by enabling or disabling the features ?
corresponding route. Q: Do we need a new model for camera sensors
(in-kernel, userspace, or both) ?

Q: Is this the best option ?

i1l  Streams uAPI (5/5)



Streams - Kernel API




/**
* struct media_entity_operations - Media entity operations

[...]
+ * @has_pad_interdep: Return whether two pads of the entity are
+ * interdependent. If two pads are interdependent they are
+ * part of the same pipeline and enabling one of the pads
+ * means that the other pad will become "locked" and
+ * doesn't allow configuration changes. pad® and padl are
+ * guaranteed to not both be sinks or sources.
+ * Optional: If the operation isn't implemented all pads
+ * will be considered as interdependent.

[...]

*/

struct media_entity_operations {

[...]
+ bool (*has_pad_interdep)(struct media_entity *entity, unsigned int pado,
+ unsigned int padil);

Iy

« Stream-aware .has_pad_interdep() operation (was
.has_route() in previous versions) exposes internal
routing to the media controller framework, used by
media pipeline helpers to walk pipelines based on
streams.

5 Streams kAPI (1/4)

/d



+/**
+ * struct v412_subdev_stream_config - Used for storing stream configuration.
+ * @pad: pad number

@stream: stream number

@enabled: has the stream been enabled with v412_subdev_enable_stream()
@fmt: &struct v412_mbus_framefmt

@crop: &struct v4l2_rect to be used for crop

@compose: &struct v41l2_rect to be used for compose

* % % ¥ X X X

This structure stores configuration for a stream.

+ + + 4+ +++ +

*/

+struct v412_subdev_stream_config {

u32 pad;

u32 stream,;

bool enabled;

struct v412_mbus_framefmt fmt;
struct v412_rect crop;

struct v412_rect compose;

+ + + + + +

+

+

 Structure to store per-stream pad configuration.

1) Streams KAPI (2/4)



* struct v412_subdev_stream_configs - A collection of stream configs.

*

+

+

+ * @num_configs: number of entries in @config.

+ * @configs: an array of &struct v412_subdev_stream_configs.
+

*/
+struct v412_subdev_stream_configs {
+ u32 num_configs;
+ struct v412_subdev_stream_config *configs;
+};

struct v412_subdev_state {
/* lock for the struct v412_subdev_state fields */
struct mutex _lock;
struct mutex *1lock;
struct v412_subdev_pad_config *pads;
struct v412_subdev_krouting routing;
+ struct v412_subdev_stream_configs stream_configs;

iy

* Integrated in v4l2_subdev_state. The whole
streams APl is heavily based on the subdev state,
and requires drivers to use the recent active
subdev state API.

‘H Streams kAPI (3/4)



/**
* struct v412_subdev_pad_ops - v4l2-subdev pad level operations

*

[...]

@enable_streams: Enable the streams defined in streams_mask on the given
source pad. Subdevs that implement this operation must use the active
state management provided by the subdev core (enabled through a call to
v412_subdev_init_finalize() at initialization time). Do not call
directly, use v412_subdev_enable_streams() instead.

@disable_streams: Disable the streams defined in streams_mask on the given
source pad. Subdevs that implement this operation must use the active
state management provided by the subdev core (enabled through a call to
v412_subdev_init_finalize() at initialization time). Do not call
directly, use v412_subdev_disable_streams() instead.

+ 4+t o+
L B T I I B

[...]

*/

struct v412_subdev_pad_ops {

[...]
+ int (*enable_streams)(struct v412_subdev *sd,
+ struct v412_subdev_state *state, u32 pad,
+ u64 streams_mask);
+ int (*disable_streams)(struct v412_subdev *sd,
+ struct v412_subdev_state *state, u32 pad,
+ u64 streams_mask);

[...]

3

* New subdev pad operation to enable and disable
streams.

* Replaces .s_stream(), helpers available to enable
interop between .s_stream() and new operations in
both directions.

5 streams kAPI (4/4)

D A
-



Streams - Kernel
Helpers




+/*~k

+ * v412_subdev_has_pad_interdep - MC has_pad_interdep implementation for subdevs
+ *

@entity: pointer to &struct media_entity

@pad0: pad number for the first pad

@padl: pad number for the second pad

This function is an implementation of the media_entity_operations.has_pad_interdep
operation for subdevs that implement the multiplexed streams API (as
indicated by the V4L2_SUBDEV_FL_STREAMS subdev flag).

It considers two pads interdependent if there is an active route between pad0®
and padil.

+ + F+ +F++F++
L I S . A . R

*/
+bool v412_subdev_has_pad_interdep(struct media_entity *entity,
+ unsigned int pad@, unsigned int padil);

* Helper to implement .has_pad_interdep() based
on active routing table.

[ Streams Helpers (1/6)

D
v



+/**

+ * v412_subdev_state_get_stream_format() - Get pointer to a stream format
+ * @state: subdevice state

@pad: pad id

@stream: stream id

This returns a pointer to &struct v412_mbus_framefmt for the given pad +
stream in the subdev state.

* % % ¥ X X X

If the state does not contain the given pad + stream, NULL is returned.
*/+struct v412_mbus_framefmt *
+v412_subdev_state_get_stream_format(struct v412_subdev_state *state,

+ unsigned int pad, u32 stream);

+ + + 4+ +++ +

+v412_subdev_state_get_stream_crop(), v41l2_subdev_state_get_stream_compose()

* Helpers to retrieve stream format, crop and
selection rectangle pointers from the subdev state.

Streams Helpers (2/6)




+/**

+ * v412_subdev_state_get_opposite_stream_format() - Get pointer to opposite
+ * stream format

@state: subdevice state

@pad: pad id

@stream: stream id

This returns a pointer to &struct v412_mbus_framefmt for the pad + stream
that is opposite the given pad + stream in the subdev state.

+ + + 4+ + + +
¥ F X F X * X

+ * If the state does not contain the given pad + stream, NULL is returned.

+ */

+struct v412_mbus_framefmt *
+v412_subdev_state_get_opposite_stream_format(struct v412_subdev_state *state,
+ u32 pad, u32 stream);

* Helper to retrieve stream format on the other end
of a stream within a subdev.

‘m. Streams Helpers (3/6)




+/**
* v412_subdev_state_xlate_streams() - Translate streams from one pad to another

@state: Subdevice state

@padO®: The first pad

@padl: The second pad

@streams: Streams bitmask on the first pad

Streams on sink pads of a subdev are routed to source pads as expressed in
the subdev state routing table. Stream numbers don't necessarily match on
the sink and source side of a route. This function translates stream numbers
on @pad®, expressed as a bitmask in @streams, to the corresponding streams
on @padl using the routing table from the @state. It returns the stream mask
on @padl, and updates @streams with the streams that have been found in the
routing table.

@pad® and @padl must be a sink and a source, in any order.

Return: The bitmask of streams of @padl that are routed to @streams on @pado.

TR IR T T T T T T S S S S S SR S S A
b S I S . T T B . B S I S B

*/
+u64 v412_subdev_state_xlate_streams(const struct v412_subdev_state *state,
+ u32 pad®, u32 padl, u64 *streams);

* Helper to follow streams within a subdeuv.

‘o Streams Helpers (4/6)

v



+/**

+ * v412_subdev_s_stream_helper() - Helper to implement the subdev s_stream
+ * operation using enable_streams and disable_streams

@sd: The subdevice

@enable: Enable or disable streaming

Subdevice drivers that implement the streams-aware
&v412_subdev_pad_ops.enable_streams and &v412_subdev_pad_ops.disable_streams
operations can use this helper to implement the legacy
&v412_subdev_video_ops.s_stream operation.

This helper can only be used by subdevs that have a single source pad.

L S . S T B

Return: © on success, or a negative error code otherwise.

+ + + 4+ +F++F++ o+

*/
+int v412_subdev_s_stream_helper(struct v412_subdev *sd, int enable);

* Helper to implement legacy .s_stream() operation
based on the new .enable_stream()
and .disable_stream().

* This allows usage of subdevs that use the new API
with drivers that call the legacy .s_stream()
operation.

Streams Helpers (5/6)




+
~
*
*

* v412_subdev_enable_streams() - Enable streams on a pad
@sd: The subdevice
@pad: The pad
@streams_mask: Bitmask of streams to enable

This function enables streams on a source @pad of a subdevice. The pad is
identified by its index, while the streams are identified by the
@streams_mask bitmask. This allows enabling multiple streams on a pad at
once.

*

*

*

*

*

*

*

*

*

* Enabling a stream that is already enabled isn't allowed. If @streams_mask
* contains an already enabled stream, this function returns -EALREADY without
* performing any operation.
*
*
*
*
*
*
*
*
*
*
*

Per-stream enable is only available for subdevs that implement the
.enable_streams() and .disable_streams() operations. For other subdevs, this
function implements a best-effort compatibility by calling the .s_stream()
operation, limited to subdevs that have a single source pad.

Return:

* @: Success

* -EALREADY: One of the streams in streams_mask is already enabled

* -EINVAL: The pad index is invalid, or doesn't correspond to a source pad

* -EOPNOTSUPP: Falling back to the legacy .s_stream() operation is
impossible because the subdev has multiple source pads

IR T T T T A Tk Tk T T T T T S S S S S A

+ */
+int v412_subdev_enable_streams(struct v412_subdev *sd, u32 pad,
+ u64 streams_mask);

+ v412_subdev_disable_streams()

* Helpers that wrap .enable_stream() and
disable_stream(), falling back to legacy .s_stream().

* This is meant to replace direct calls to subdev
operations when enabling or disabling streams, to
allow interoperability between old and new subdev
drivers.

\M Streams Helpers (6/6)



laurent.pinchart@ideasonboard.com




\DEAS
ON BOARD
v



GO ralbh maith
agat




